Implementing point-of-care viral load testing in community HIV programmes in South Africa

Jienchi Dorward

DPhil student, Nuffield Department of Primary Care Health Sciences, University of Oxford

Supervisors: Prof Chris Butler, Prof Gail Hayward, Dr Nigel Garrett

Community Healthcare MIC Group Seminar 3rd October 2019

jienchi.dorward@phc.ox.ac.uk @jienchi

Outline

- The HIV epidemic in South Africa
- The public health response: Universal antiretroviral therapy (ART)
 - The impact of universal treatment in primary care
 - Re-organizing healthcare services: community antiretroviral programmes
- STREAM: a randomised trial of point-of-care viral load testing
- Innovation project:
 - Implementing point-of-care viral load testing in community antiretroviral therapy programmes

The HIV epidemic in South Africa

People living with HIV & on ART in South Africa¹

 ART for people with low CD4 counts or opportunistic infections

Universal Treatment for HIV

- WHO guidelines to provide antiretroviral therapy (ART) for all people with HIV since 2015
 - Reduces morbidity and mortality even in people with high CD4 count
 - Decreases onwards HIV transmission
 - Implemented in South Africa in 2016
- The challenges of Universal Treatment
 - Does the healthcare system have capacity?

Measuring the impact of universal treatment

- Audit of routine, anonymized clinic & lab data from 8 South African primary care clinics
- Eligibility: Non-pregnant, aged >15 years, initiating ART between Jan 2015-Jun 2018.

Figure 1: Map of clinic locations

JNIVERSITY OF

Does the healthcare system have capacity?

 Aim: describe trends in ART initiations between Jan 2015-Jun 2018, N = 9675

Figure 2: ART initiations, mean CD4 count and proportion of patients with tuberculosis between January 2015 to June 2018

Providing services to healthier populations

- Starting more 'healthy' people on ART
- Need to adapt services
- Provide tailor made 'differentiated care' services rather than 'one size fits all'

John, the client

IAS. Differentiated care for HIV: a decision framework for antiretroviral therapy delivery. Durban; 2016.

LEXIE

REGIS

Problems with clinic-based HIV services

- Interviews and focus groups with 55 patients and 8 healthcare workers
- Need to adapt services
- Provide tailor made 'differentiated care' services rather than 'one size fits all'

Community ART delivery in South Africa

- Centralised Chronic Medication Dispensing & Distribution (CCMDD)⁵
- Over 1.2 million people receiving ART in CCMDD

Community ART delivery in South Africa

• Problems with CCMDD:

 Roberts. CCMDD: A Public/Private Partnership to Increase Access to ART. 2018 http://files.icap.columbia.edu/files/uploads/ICAP_Grand_Rounds_Project_Last_Mile_Sli des.pdf.

Point-of-care (POC) viral load testing⁶

- Xpert HIV-1 VL assay
- Fully automated molecular PCR assay
- Provide a viral load result in 90 minutes from 1ml of plasma
- Diagnostic accuracy approved by World Health Organization
- Could reduce clinic visits, save patient transport costs and speed up clinical decisions

Point-of-care (POC) viral load testing⁶

- The Simplified TREAtment and Monitoring (STREAM) Study
- Randomized trial of POC viral load testing in Durban, SA⁷
 - 390 non-pregnant adults on ART for 6 months, follow up for 1 year
 - Intervention: POC viral load testing (Xpert HIV-1 VL)
 - Result within 2 hours
 - Standard care: laboratory viral load testing
 - After 6 months in the study, CCMDD referral if viral load suppressed

Point-of-care (POC) viral load testing⁸

	Intervention Arm	Standard-of- care Arm	Absolute Risk Difference (95% CI)	P value
Viral suppression (<200 copies/mL) and retention in care at 12 months	89.7% (175/195)	75.9% (148/195)	13.9% (6.4-21.2)	<0.001

Point-of-care (POC) viral load testing and CCMDD⁸

8. Drain et al. Point-of-care viral load testing improves HIV viral suppression and retention in care. CROI: 2019

Acceptability of POC viral load testing

"I even save money that I use for transport. If I take bloods today and they tell me I should come back after two weeks that means I have to pay another transport fare to come here [clinic]; Whereas I can wait two hours and get my results and leave afterwards." (Client, female, 42 years)

> "I don't think it can work, because clinics get full and there will need to be space for people who are waiting [for POC results] and space for people who need to be attended. Where are all these people going to wait? there will be a lot of congestion ." (Client, male, 28 years)

Innovation project proposal

- Single-site, randomized pilot study of implementing point-of-care viral load testing in South Africa
- Aims:
 - To determine if implementing point-of-care viral load testing is feasible in a routine primary care clinic, and to estimate its effect size on CCMDD renewal.
- Evaluation
 - % in POC arm with same-day viral load result
 - % with CCMDD renewal at 12 weeks (i.e. not dormant) in POC arm
 - % with CCMDD renewal at 12 weeks (i.e. not dormant) in SOC arm
 - Focus groups discussions and interviews with clinic staff

Implementation Science techniques

BOX 3: STAKEHOLDER MAP				
High	Satisfy	Manage		
Power	Provincial Department of Health	Municipality Health Unit		
	Pharmacy Direct	Head of Primary Care		
	Community based pick-up point	Data manager		
	organisation	PHC Clinic staff		
	CAPRISA management	Nursing service manager		
	National Health Laboratory	CCMDD nurse		
	Service	Doctor		
	National Managers	Health Systems Trust		
		Programme manager		
		Cepheid Inc		
Low	Monitor	Inform		
Power	Abbott	Clinic staff		
	Molbio	Phlebotomist		
	International AIDS Society	Data capturers		
	Differentiated Care team	Receptionists and clerical staff		
	• ICAP Columbia – Southern Africa	National Health Laboratory Service		
	Differentiated Care team	Local Virology Laboratory		
	Low impact/stake-holding	High-impact/stake-holding		

Implementation Science techniques

6. Dorward, Drain, Garrett. Lancet HIV 2018; 5:e8–e9

7. Dorward et al. STREAM Protocol. BMJ Open 2017; 7:e017507

Implementation Science techniques

6. Dorward, Drain, Garrett. Lancet HIV 2018; 5:e8–e9

7. Dorward et al. STREAM Protocol. BMJ Open 2017; 7:e017507

Summary

- Universal Treatment of HIV will greatly increase the number of people on ART in South Africa
- New models of care are needed to efficiently provide universal ART in South African primary care clinics
- Novel point-of-care viral load testing technologies could increase efficiencies in community ART programmes
- More evidence around *implementation* of these assays is required

Acknowledgements

- Prof Chris Butler and Prof Gail Hayward (Supervisors)
- Dr Nigel Garrett & Dr Paul Drain (STREAM Principal Investigators)
- Funders and collaborating organisations
- THET Health Innovation Fellowships

What do Innovations Look Like?

Ryan Ghita

NHS Specialist Surgical Registrar

Northumbria – Tanzania Partnership

THET Innovation Fellowship

What Is Innovation

Open Access

An Innovation (not ours!)

Research Article

Ten-Year Personal Experience of Using Low Density Polyethylene (LDPE) Mesh for Inguinal Hernia Repair

Ravindranath R Tongaonkar¹, David L Sanders^{2*} and Andrew N Kingsnorth³

1Dr. Tongaonkar Hosnital. Dondaicha. Diet - Dhula (Maharashtra) 425.408. India

Background: The Repair of Hernia

- Reduces the chance of recurrence
- Plastic netting (polypropelene)
- 30 + years
- Pelvic floor mesh repair

Background: Low and Middle Income Countries

- 27% life time risk in makes
- Tanzania alone 4.4 million DALYS
- Significant economic impact due to disability and premature death
- North west Tanzania mortality rate of 9.7%
- Larger and more severe

Applying the Innovation of Others

Strong partnership

Seen first hand the suboptimal hernia repair and effects of recurrence

Mesh expensive

Low availability

K.C.M.C

Northumbria Healthcare

LELEBRATING 20 YEARS OF PARTNERSHIP

Applying the Innovation of Others

- Sourced an undyed untreated mosquito netting
- Cut sterilized and packed in UK
- Delivered to Tanzanian surgeons
- Followed patient up for 2 years

Applying the Innovation of Others

- Surgeons and patients happy
- Outcomes were good
- Room for improvement
- Sourced our own mesh to our specification

Applying the Innovation of Others

- Used since 2013 making adjustments
- 220+ operations
- Retrospective data collection on all
- 64 patients up to 40 months

Conclusions

The generic mesh has favourable outcomes in terms of recurrence in comparison to other low-cost meshes, and is vastly more cost effective. Larger studies are required to support this finding.

Masters by Research: 2016-17 The Long Term Clinical Outcomes of Hernia Repair Utilising Mesh, at Kilimanjaro Christian Medical Centre, Northern Tanzania Kathyn Parker-Conway Word Court: 2462

Then we started asking the question... Why can we not use this mesh here in the NHS?

120 000 hernia operations per year

£30 compared to < £2++

Compile more evidence - Especially long term and ventral hernias

Approval process

How to Implement the Reverse Innovations?

Streamline the process

Plan for Implementation

How to Implement the Reverse Innovations: Compiling Evidence

Unique position for data collection

- Previous experience
- Long-term follow up

How to Implement the Reverse Innovations : Compiling Evidence

- With the support of a THET innovation fellowship
- Set up a study to collect data prospectively
- 1. Meet with members of surgical team
- 2. Delivered more mesh
- 3. Dedicated member of staff for the data collection
- 4. Recruited 5 patients

How to Implement the Reverse Innovations : Approval Process

- CE marking route
 - Understand how to approach
 - Cost
 - Testing
 - Brexit

CE

- Department of Medicines and Healthcare Products Regulatory Agency
 - Not require CE marking
 - Pelvic floor mesh publicity
- Supply Chain and Procurement

Medicines & Healthcare products Regulatory Agency

How to Implement the Reverse Innovations: Process Streamlining and Implementation

Packaging

Sterilizing

Implementation

- Northumbria lead for innovation and clinical trial officer
- Account manager at NHS supply chain
- Northumbria Procurement Business Partner
- Forwarded for Bright ideas award

Barriers & What We Have Learned

Evidence

Regulations

Cost

Bad publicity of mesh

Time / commitment

Knowing who to contact

Whole different skill set

Impact

- Huge potential cost savings
- Valuable data for KCMC
- Valuable data for generic mesh/mosquito netting
- Price drop?
- Knowledge

Successes

- Happy with quality product and process
- Partners in KCMC using the mesh and having good outcomes
- Implemented the research
- Plan in place for approaching regulatory approval
- Have plan or road map for implementation
- THET fellowship, shortlisted for Bright Ideas award

Thank You

